On integer eigenvectors and subeigenvectors in the max-plus algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On visualization scaling, subeigenvectors and Kleene stars in max algebra

The purpose of this paper is to investigate the interplay arising between max algebra, convexity and scaling problems. The latter, which have been studied in nonnegative matrix theory, are strongly related to max algebra. One problem is that of strict visualization scaling, defined as, for a given nonnegative matrix A, a diagonal matrix X such that all elements of X −1 AX are less than or equal...

متن کامل

Eigenvectors of interval matrices over max-plus algebra

The behaviour of a discrete event dynamic system is often conveniently described using a matrix algebra with operations max and plus Such a system moves forward in regular steps of length equal to the eigenvalue of the system matrix if it is set to operation at time instants corresponding to one of its eigenvectors However due to imprecise measurements it is often unappropriate to use exact mat...

متن کامل

Max-Plus algebra on tensors and its properties

In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.

متن کامل

Max-plus algebra

The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...

متن کامل

Linear Projectors in the max-plus Algebra

In general semimodules, we say that the image of a linear operator B and the kernel of a linear operator C are direct factors if every equivalence class modulo C crosses the image of B at a unique point. For linear maps represented by matrices over certain idempotent semifields such as the (max,+)-semiring, we give necessary and sufficient conditions for an image and a kernel to be direct facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2013

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.12.017